

Deutschland auf dem Weg in ein neues Energiezeitalter

Prof. Hermann Wagenhäuser (Hochschule München)

CSU-Ortsverband St. Englmar/Arbeitskreis Umwelt 24. April 2013

Referent

Hermann Wagenhäuser

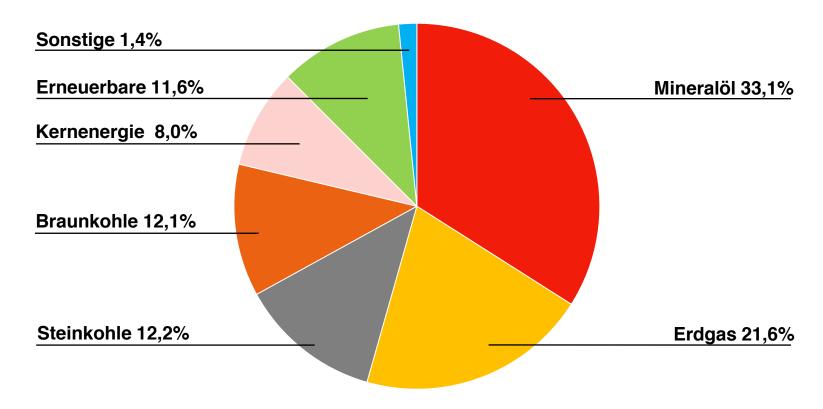
- Studium der Elektrotechnik an der Hochschule München
- 31 Jahre Tätigkeit in der bayerischen Energiewirtschaft
- davon 8½ Jahre als technischer Vorstand bei E.ON Bayern
- seit Juli 2011 Honorarprofessor an der Hochschule München
- zusätzlich Lehraufträge an der Hochschule Landshut und am Institut für Industrie und Finanzmanagement (IPFM) in Prag

Fragestellungen

- Was versteht man unter Energiewende?
- Warum brauchen wir eine Energiewende?
- Welche Herausforderungen bringt die Energiewende?
- Was sind die Erfolgsfaktoren für die Energiewende?

Inhalt

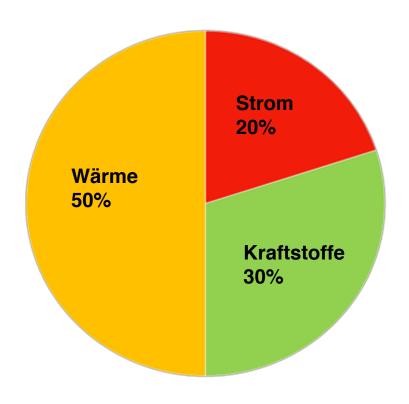
- Heutige Situation in Deutschland
- 2. Ziele für die Energiezukunft in Deutschland
- 3. Herausforderungen durch die neuen Rahmenbedingungen
- 4. Energiewende in der Gemeinde Sankt Englmar
- 5. Zusammenfassung



Inhalt

- Heutige Situation in Deutschland
- 2. Ziele für die Energiezukunft in Deutschland
- 3. Herausforderungen durch die neuen Rahmenbedingungen
- 4. Energiewende in der Gemeinde Sankt Englmar
- 5. Zusammenfassung

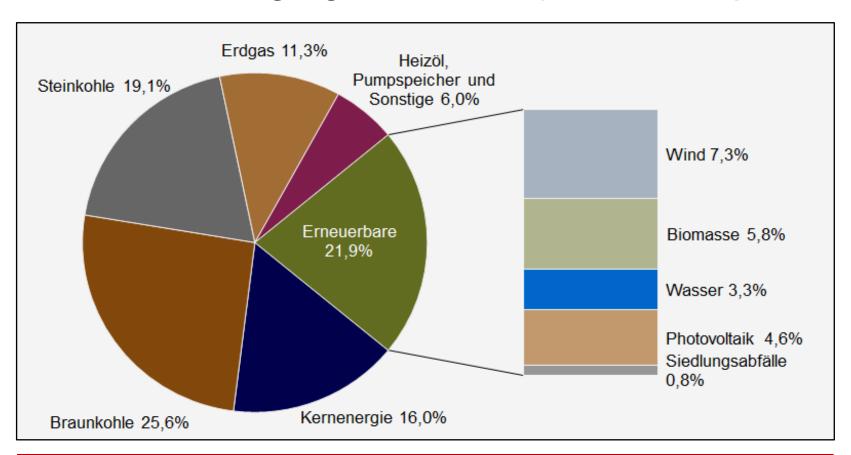
Primärenergieverbrauch im Jahr 2012 (466 Mio. t SKE)



Nur rund ein Drittel der eingesetzten Primärenergie kommt als Nutzenergie beim Anwender an

Quelle: AG Energiebilanzen

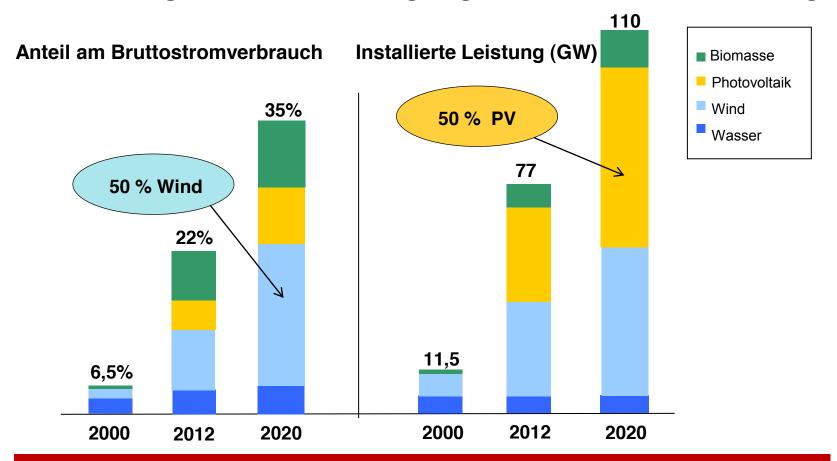
Endenergieverbrauch (EEV) im Jahr 2011 (296 Mio. t SKE)


- 30% des EEV entfallen auf Raumwärme und Warmwasserbereitung
- Weitere 20% werden für Prozesswärme und Prozesskälte benötigt
- Der Stromverbrauch gliedert sich in:
 - -Industrie (42%)
 - -GHD/Verkehr (30%)
 - -Haushalte (28%)
- Nur 4% des Stromverbrauchs entfallen auf Beleuchtung

Energiesparen ist mehr als nur Stromsparen

Quelle: AG Energiebilanzen, BMU

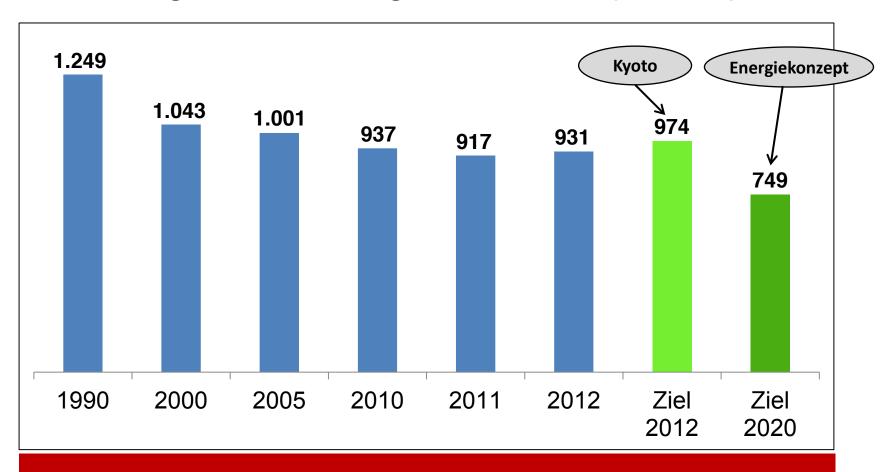
Brutto-Stromerzeugung im Jahr 2012 (617 Mrd. kWh)



Erneuerbare Energien spielen mittlerweile mit 22 % eine wesentliche Rolle bei der Stromerzeugung

Quelle: AG Energiebilanzen, BDEW

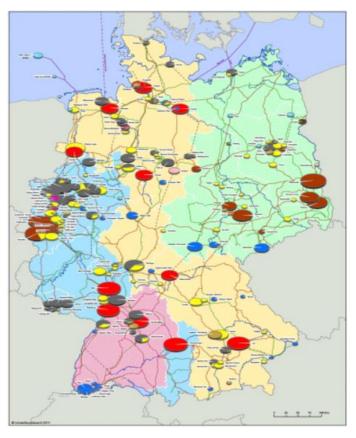
Entwicklung der Stromerzeugung aus erneuerbaren Energien



Der Ausbau der erneuerbaren Energien ist voll im Gang und liegt bei der Photovoltaik deutlich über Plan

Quelle: DLR, Fraunhofer IWES, BDEW

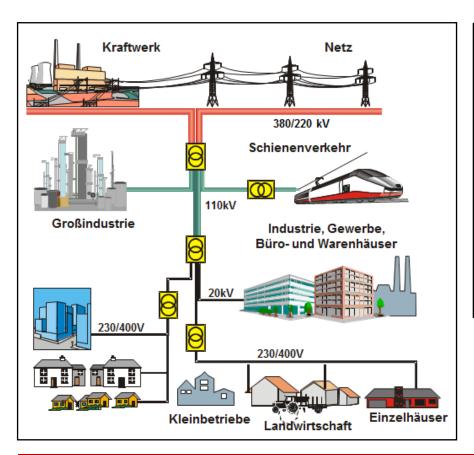
Entwicklung der Treibhausgasemissionen (in Mio. t)



Deutschland hat Kyoto-Ziel 2012 deutlich unterschritten

Quelle: AG Energiebilanzen

Heutige Strominfrastruktur in Deutschland


- Heutige Strominfrastruktur ist das Ergebnis einer über 100jährigen Entwicklung
- Stromnetz gliedert sich in Übertragungsund Verteilungsnetz und ist rd. 1,9 Mio.
 Kilometer lang
- Installierte Kraftwerksleistung liegt bei rund 160 GW, aber nur 87 GW sind als gesicherte Leistung verfügbar

Netze und Erzeugungsstrukturen stellen eine Funktionseinheit dar

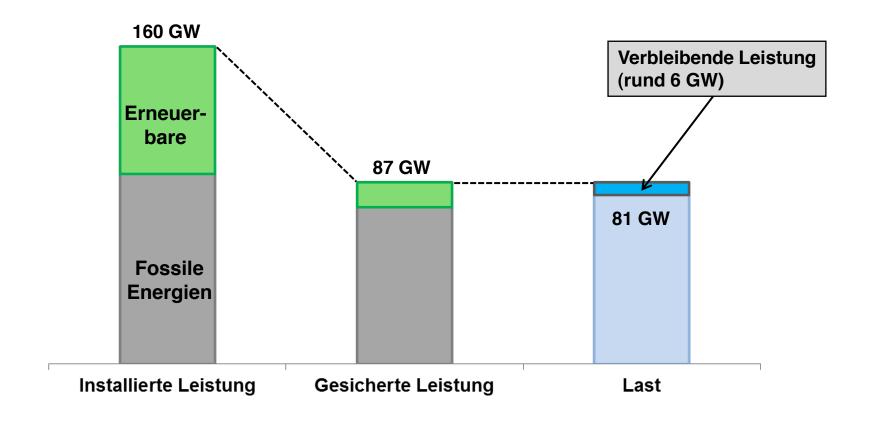
Quelle: Umweltbundesamt

Stromnetz mit unterschiedlichen Spannungsebenen

Übertragungsnetz (34.400 km)

Höchstspannung (380/220 kV)

Verteilungsnetz (1,87 Mio. km)


- Hochspannung (110 kV)
- Mittelspannung (10/20 kV)
- Niederspannung (0,4 kV)

Mit einer Verfügbarkeit von 99,995 % hat Deutschland heute europaweit die zuverlässigste Strominfrastruktur

Quelle: BDEW, BNetzA

Installierte Leistung, gesicherte Leistung und Last

Gesicherte Leistung liegt unter entso-e Sicherheitsniveau

Quelle: BDEW, Stand Ende 2011

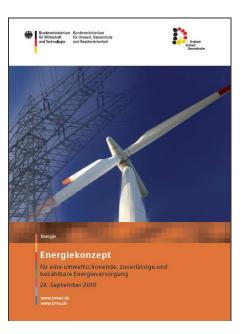
Inhalt

- 1. Heutige Situation in Deutschland
- 2. Ziele für die Energiezukunft in Deutschland
- 3. Herausforderungen durch die neuen Rahmenbedingungen
- 4. Energiewende in der Gemeinde Sankt Englmar
- 5. Zusammenfassung

Energiekonzept der Bundesregierung vom September 2010

umfasst neun Handlungsfelder:

- 1. Erneuerbare Energien
- 4. Leistungsfähige Netze
- 7. Energieforschung


- 2. Energieeffizienz
- 5. Energieeffizienz Gebäude
- 8. Internationaler Kontext

- 3. Kernenergie Fossile KW
- 6. Mobilität

9. Transparenz & Akzeptanz

und verfolgt drei übergeordnete Ziele:

- Reduzierung der Treibhausgas-Emissionen
- Ausstieg aus der Kernenergie
- Verringerung der Importabhängigkeit

Energiekonzept mit überaus ehrgeizigen Zielsetzungen

Quelle: Energiekonzept der Bundesregierung

Konkrete Ziele und Maßnahmen des Energiekonzepts (I)

- Reduktion der Treibhausgas-Emissionen bis 2020 um 40% und bis 2050 um 80% (gegenüber 1990)
- Senkung des Primärenergieverbrauchs um 20% bis 2020 und 50% bis 2050 (gegenüber 2008)
- Reduktion des Stromverbrauchs um 10 % bis 2020 und 25 % bis 2050 (gegenüber 2008)
- Reduktion des Wärmebedarfs um 20% bis 2020 und um 80% bis 2050 (gegenüber 2008)

Steigerung der Energieeffizienz als wesentlicher Baustein

Quelle: Energiekonzept der Bundesregierung, Dena

Konkrete Ziele und Maßnahmen des Energiekonzepts (II)

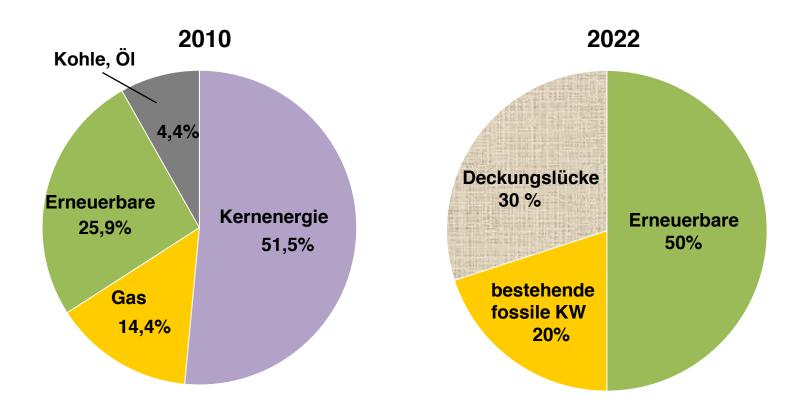
- Verdopplung der energetischen Sanierungsrate auf 2% zur Erreichung eines weitestgehend klimaneutralen Gebäudebestands bis 2050
- Steigerung der Energieproduktivität um durchschnittlich 2,1 %
- Anteil der Stromerzeugung aus erneuerbaren Energien am Bruttostromverbrauch 35 % bis 2020 und 80 % bis 2050
- Beschleunigung des Ausbaus von Offshore-Wind (25 GW bis 2030)
- neu: Ausstieg aus der Kernenergienutzung bereits bis 2022

Kernenergie als Brückentechnologie muss durch Gaskraftwerke ersetzt werden

Quelle: Energiekonzept der Bundesregierung, Dena

Bayerisches Energiekonzept "Energie innovativ"

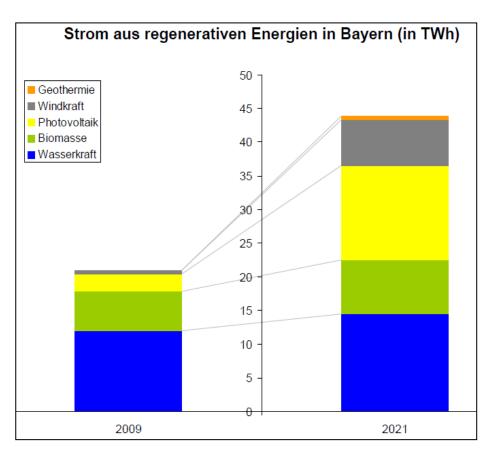
Wesentliche Zielsetzungen und Maßnahmen:


- Deckung von 50% des bayerischen Stromverbrauchs aus Erneuerbaren Energien
- Keine weitere Steigung des Stromverbrauchs
- Reduzierung des Wärmeverbrauchs um 20%
- Umfangreicher Netz- und Speicherausbau auf allen Ebenen
- Bedarfsgerechte Systemintegration der Erneuerbaren Energien
- Ausbau der Gasinfrastruktur

Bayerisches Energiekonzept mit teilweise noch ehrgeizigeren Zielen

Quelle: Bayerisches Energiekonzept

Bruttostromerzeugung in Bayern 2010 und 2022



Ersatz von über 50 % Kernenergieanteil als zentrale Herausforderung für den Umbau des Energiesystems in Bayern

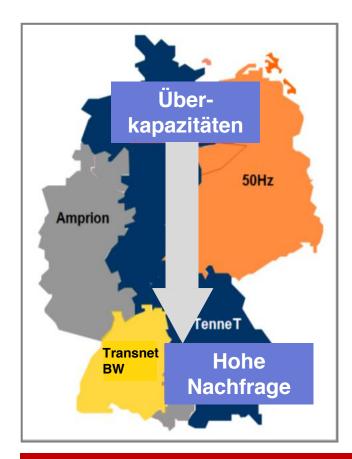
Quelle: Bayerisches Landesamt für Statistik, Bayerisches Energiekonzept

Geplante Entwicklung der Stromerzeugung aus EE in Bayern

Wasser	15,2 % →	17,1 %
Wind	1 % →	5,9 %
Biomasse	6,5 % →	8,2 %
PV	6 % →	16,4 %

Wasserkraft und Photovoltaik als tragende Säulen der Stromerzeugung aus Erneuerbaren Energien in Bayern

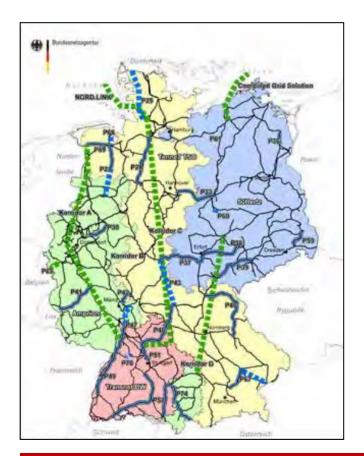
Quelle: Bayerisches Energiekonzept



Inhalt

- 1. Heutige Situation in Deutschland
- 2. Ziele für die Energiezukunft in Deutschland
- 3. Herausforderungen durch die neuen Rahmenbedingungen
- 4. Energiewende in der Gemeinde Sankt Englmar
- 5. Zusammenfassung

Herausforderungen für die Stromübertragungsnetze



- Fossile und nukleare Kraftwerke befinden sich heute vor allem nahe der Lastzentren im Westen und Süden Deutschlands
- Ausbau der Windenergie führt zu regionaler Verlagerung von Erzeugungskapazitäten in den Norden Deutschlands
- Bestehende Übertragungsnetze stoßen insbesondere auf Nord-Süd-Trassen an Kapazitätsgrenzen
- Gemäß Deutscher Energieagentur (Dena)
 4.500 km neue 380-kV-Leitungen erforderlich

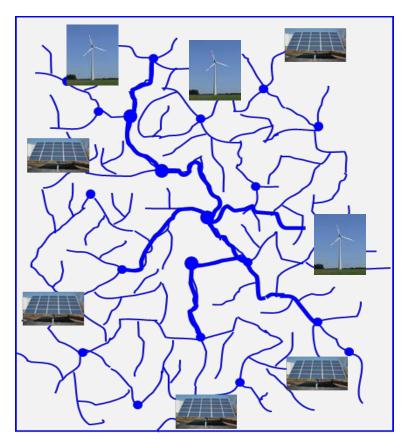
Ausbau der Stromübertragungsnetze ist einer der wesentlichen Bausteine, quasi das "Rückgrat" der Energiewende

Netzentwicklungsplan (NEP) soll Netzausbau beschleunigen

Entwurf der Übertragungsnetzbetreiber

- 3.800 km Neubau
- 4.400 km Umrüstung
- vier HGÜ-Korridore
- 74 Maßnahmen

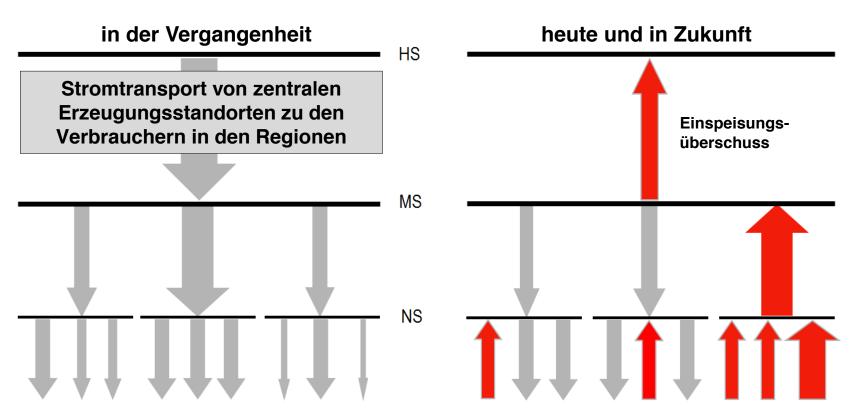
von BNetzA bestätigter NEP


- 2.800 km Neubau
- 2.900 km Umrüstung
- drei HGÜ Korridore
- 51 Maßnahmen

"Das Tempo des Netzausbaus bestimmt das Tempo der Energiewende" (Martin Fuchs, Vorsitzender der Geschäftsführung von TenneT)

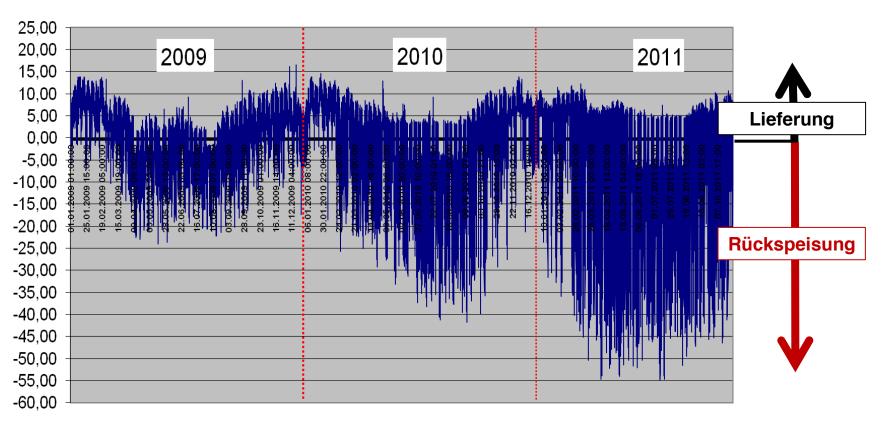
Quelle: Netzentwicklungsplan

Herausforderungen für die Stromverteilungsnetze (1)



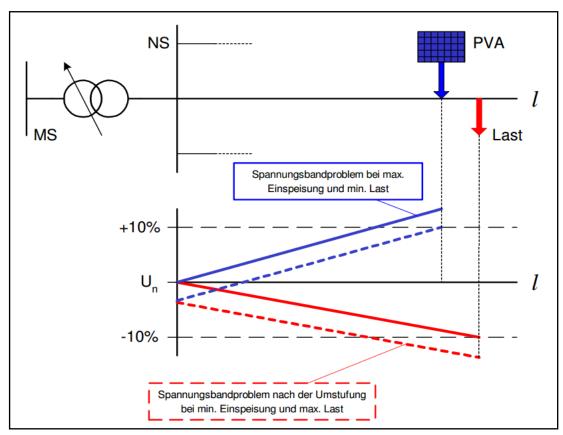
- Massiver Ausbau von Photovoltaik, Windkraft und Biomasse vor allem in netztechnisch eher schlecht erschlossenen Regionen
- über 95% aller regenerativen Erzeugungsanlagen speisen ins Stromverteilungsnetz ein

Umkehr der Energieflussrichtung durch Vielzahl dezentraler Einspeisungen


Herausforderungen für die Stromverteilungsnetze (2)

Netze stoßen an Kapazitätsgrenzen mit der Folge von Spannungsproblemen und Betriebsmittelüberlastungen

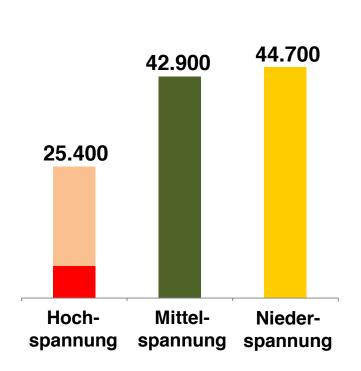
Belastung von Umspannwerken durch dezentrale Einspeisung



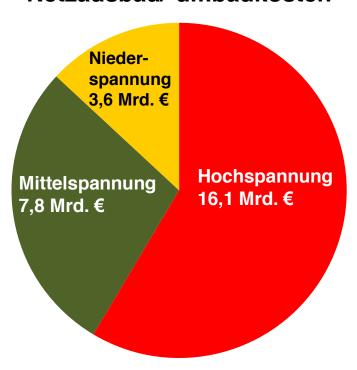
Dezentrale Einspeisung übersteigt vielerorts den Verbrauch und es muss in überlagerte Spannungsebenen zurückgespeist werden

Quelle: Dena

Spannungshaltung im Niederspannungsnetz



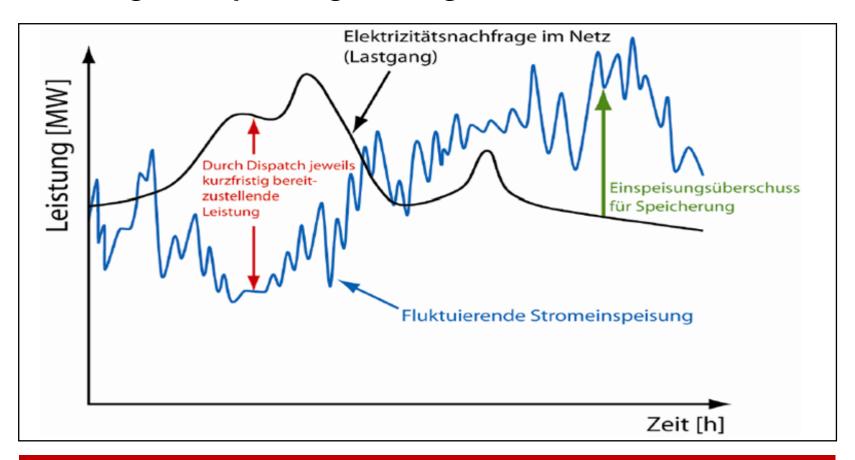
Zulässiges Spannungsband kann nur durch Netzausbau oder Einbau von Regeleinrichtungen eingehalten werden



Netzausbaubedarf/-kosten gemäß Dena-Verteilnetzstudie

Netzausbaubedarf (km)

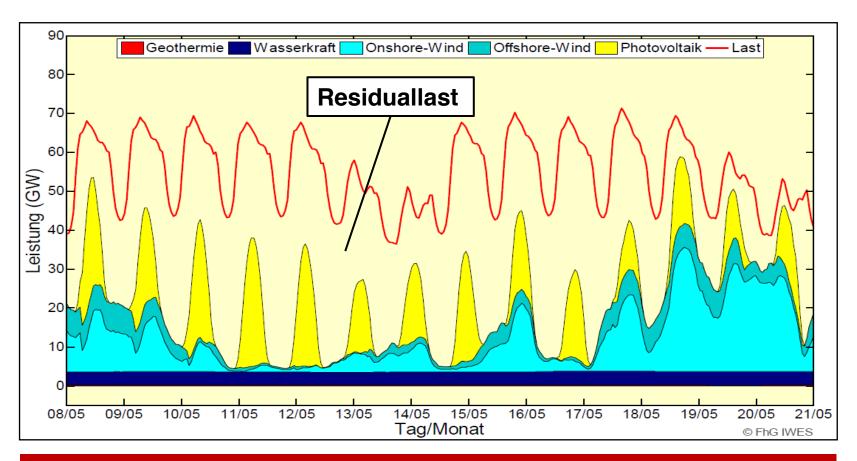
Netzausbau/-umbaukosten



Netzausbau/-umbaukosten im Verteilungsnetzbereich von knapp 30 Mrd. € allein bis 2020

Quelle: Dena

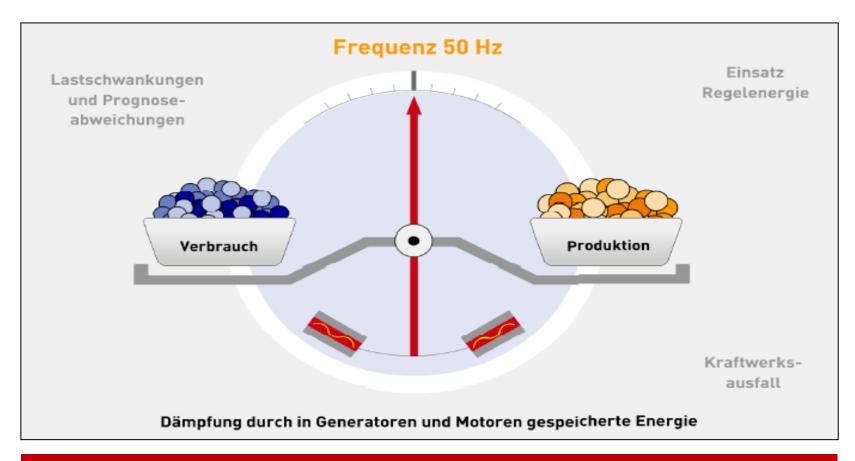
Zukünftige Einspeisung im Vergleich zur Lastkurve



Ausbau der Erneuerbaren Energien führt zu einer zunehmenden Entkopplung zwischen Erzeugung und Verbrauch

Quelle: Prof. Faulstich, TU München

Prognostizierter Verlauf der EE-Einspeisung im Mai 2020



Deckung der Residuallast erfordert flexible Regelkraftwerke und Stromspeicher

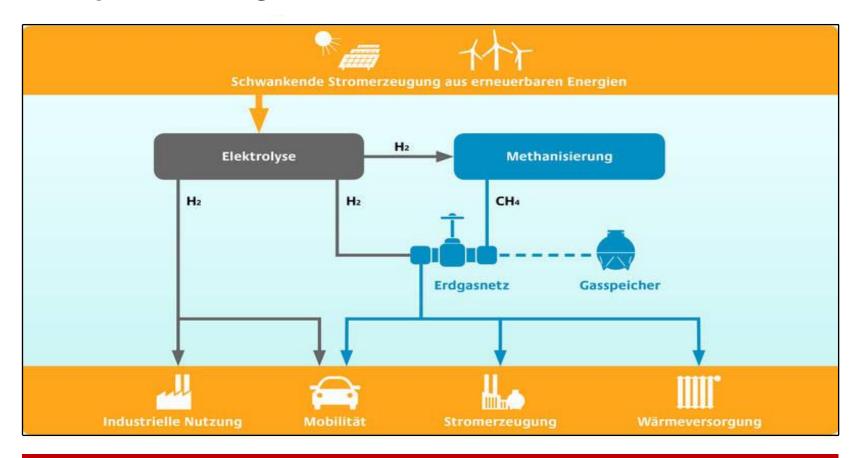
Quelle: BMU - Leitstudie 2010

Frequenz als Gradmesser für unser Stromversorgungssystem

Erzeugung und Verbrauch müssen sich stets im Gleichgewicht befinden

Quelle: Amprion, Dena

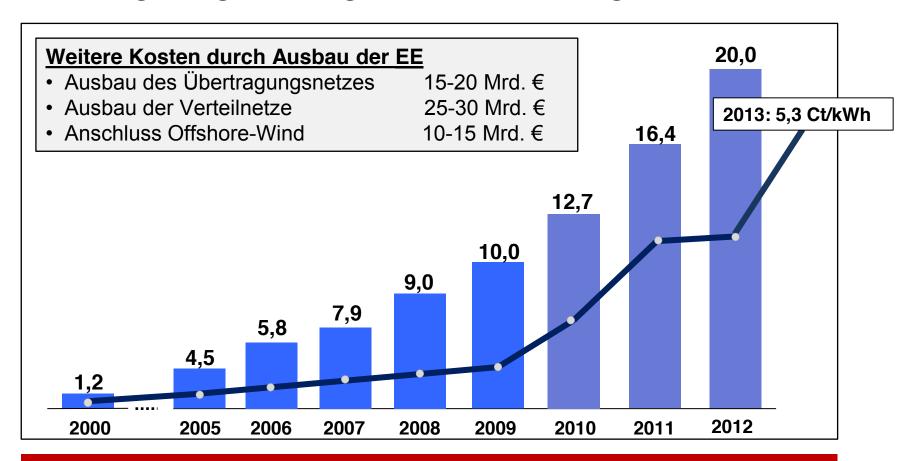
Möglichkeiten zur Stromspeicherung


Technologie		Wirkungs- grad	Einsatz- bereich	Speicherkosten (Zielwert 2020)
Pumpspeicher	la month	bis 80 %	Kurzzeit	3 - 6 ct/kWh
Druckluftspeicher		bis 70 %	Kurzzeit	3 ct/kWh
Batteriespeicher		bis 95 %	Kurzzeit	12 ct/kWh
Chem. Speicher (Power-to-Gas)	H ₂	35 - 40 %	Langzeit	10 - 15 ct/kWh

Stromspeicher heute fast ausschließlich in Form von Pumpspeichern vorhanden, Kapazitäten reichen für die Zukunft bei weitem nicht aus

Quelle: Dena, SRU, BMWi, VDE, Kloess

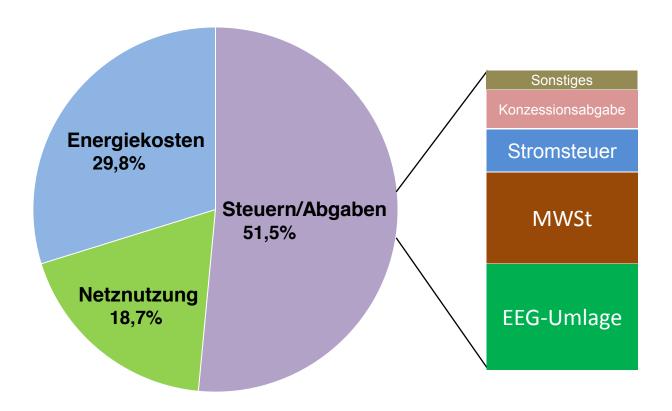
Prinzipdarstellung Power-to-Gas



Power-to-Gas als großer Hoffnungsträger für die Langzeitspeicherung

Quelle: Strategieplattform Power to Gas, Dena

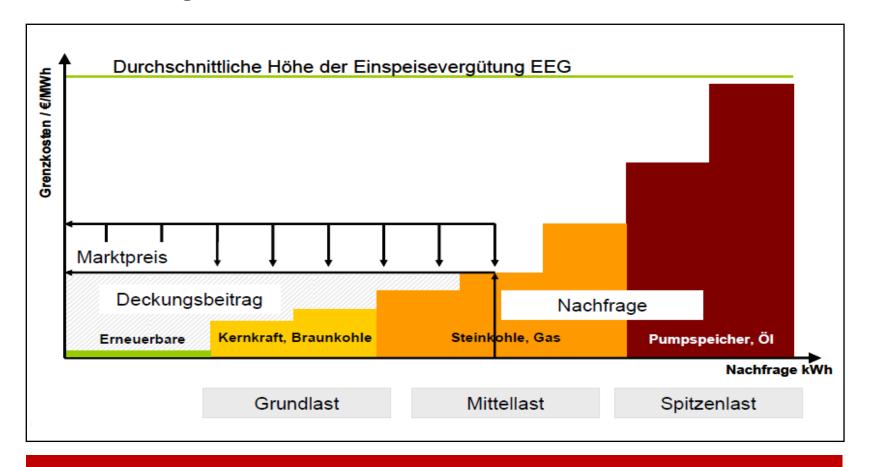
EEG-Vergütungszahlungen und EEG-Umlage



Den Umbau des Energiesystems auf erneuerbare Energien gibt es nicht zum Nulltarif

Quelle: BDEW, Internetseite der Übertragungsnetzbetreiber, Netzentwicklungsplan

Zusammensetzung des Haushaltsstrompreises



Mittlerweile entfallen über 50% des Haushaltsstrompreises auf Steuern und Abgaben

Quelle: Rewag

Preisbildung an der Strombörse

Erneuerbare Energien reduzieren den Börsenpreis

Quelle: DIHK

Inhalt

- 1. Heutige Situation in Deutschland
- 2. Ziele für die Energiezukunft in Deutschland
- 3. Herausforderungen durch die neuen Rahmenbedingungen
- Energiewende in der Gemeinde Sankt Englmar
- 5. Zusammenfassung

Erneuerbare Energien- und KWK-Anlagen in Sankt Englmar

Anlagenübersicht

Anteil am Stromverbrauch (10,3 GWh)

Energie- träger	Anlagen -zahl	Installierte Leistung	Erzeugung 2011
Solar	131	2.407 kW	2.092 MWh
Wasser	3	317 kW	201 MWh
Biomasse	1	6 kW	
Wind	1	48 kW	15 MWh
KWK	2	17 kW	26 MWh
Summe	138	2.794 kW	2.334 MWh

Anteil der Erneuerbaren Energien am Stromverbrauch in der Gemeinde Sankt Englmar entspricht dem Bundesdurchschnitt

Quelle: E.ON Bayern

Inhalt

- 1. Heutige Situation in Deutschland
- 2. Ziele für die Energiezukunft in Deutschland
- 3. Herausforderungen durch die neuen Rahmenbedingungen
- 4. Energiewende in der Gemeinde Sankt Englmar
- 5. Zusammenfassung

Wesentliche Bausteine der Energiewende

- Weitere Steigerung der Energieeffizienz in allen Bereichen als zentrale Grundlage für eine nachhaltige Energieversorgung
- Ausbau der Stromnetze auf Übertragungs- und Verteilnetzebene sowie Umbau der Verteilnetze zu "Smart-Grids"
- Ausbau der Erneuerbaren Energien, aber nur soviel, wie man sinnvoll ins Stromsystem integrieren kann
- Massiver Ausbau der Speicherkapazitäten sowie Bau von Regelkraftwerken zur Beherrschung der zunehmend volatilen Stromerzeugung
- Ausbau des Lastmanagements zur besseren Anpassung des Verbrauchs an die Erzeugung

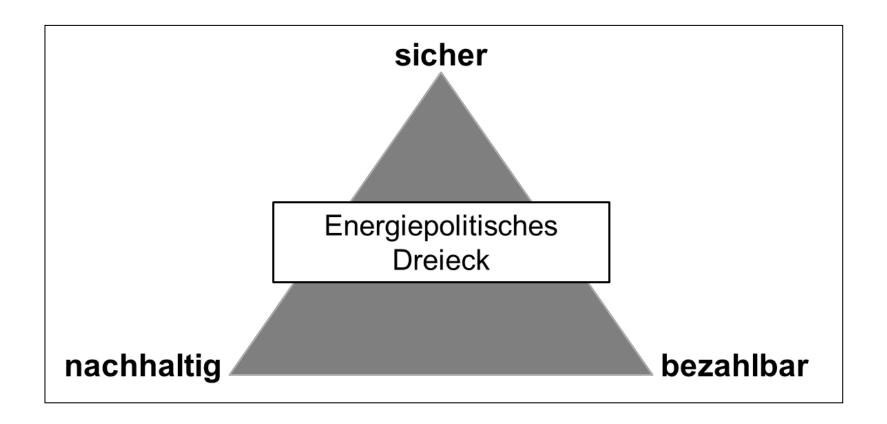
Energiewende ist weit mehr als Ausstieg aus der Kernenergie und Ausbau von Windkraft und Photovoltaik

Wo stehen wir heute bei der Energiewende?

- Wesentliche Gesetze sind auf den Weg gebracht
- Fast 25 % Stromerzeugung aus Erneuerbaren Energien
- 8 von 17 Kernkraftwerken sind abgeschaltet
- Netzausbau im Übertragungsnetz stockt
- Ausbau von Offshore-Wind kommt nur schleppend voran
- Aus- und Umbau der Verteilnetze voll im Gang
- Fehlende Investoren f

 ür Gaskraftwerke
- Kaum Fortschritte bei Energieeffizienz und Speicherung
- Kosten laufen aus dem Ruder ("Strompreisbremse")

Vieles läuft nicht rund, ausufernde Kosten und stockender Netzausbau aber sind momentan die größten Herausforderungen



Erfolgsfaktoren für die Energiewende

- Zusammenführung der Einzelbausteine zu einem Gesamtkonzept mit realistischem zeitlichen Horizont
- Klare Umsetzungsverantwortung ("Projektleiter")
- Mehr Markt und weniger Planwirtschaft
- Schlüssiges Finanzierungskonzept und investitionsfreundliche Rahmenbedingungen
- Umsetzung im europäischen Kontext, kein deutscher Alleingang
- Akzeptanz in der Bevölkerung

Die Energiewende ist ein Jahrhundertprojekt Versorgungsicherheit und Bezahlbarkeit gehen vor Schnelligkeit

Das Energiepolitische Dreieck muss sich auch in einer neuen Energiewelt im Gleichgewicht befinden